BHARATH COACHING CENTRE

7 th cbse	Maths	Total: 40
Congruent triangles		Time: 45 mins

SECTION-A

 $1 \times 6 = 6$

- 1. If two angles are congruent, their..... are same.
- 2. By which criterion two triangles cannot be proved congruent?
- 3. The symbol of correspondence is......
- 4. An angle is of 50° then its congruent angle is of.....
- 5. How many medians can a triangle have?
- 6. If a $\triangle ABC \cong \triangle PQR$ then AB is equal to

SECTION-B

 $5 \times 2 = 10$

 $4 \times 3 = 12$

- 1. Can two equilateral tringles always be congruent? Give reasons.
- Without drawing the figures of the triangles, write all six pairs of equal measures in each of the following pairs of congruent triangles.
 a. Δ XYZ=Δ MLN
- 3. Define congruence of triangles.
- 4. $\triangle ABC$ is right triangle in which $\angle A = 90^{\circ}$ and AB=AC. The values of $\angle B \land \angle C$ will be
- 5. In a quadrilateral ABCD, AD=BC and $\angle DAB = \angle CBA$. If $\triangle ABD \cong \triangle BAC$. The relation between $\angle ABD \land \angle BAC$ is

SECTION-C

- 1. Prove that in an isosceles triangle, angles opposite to equal sides are equal.
- 2. By applying congruence rule write what additional information is needed to establish congruence
 - a. $\Delta PQR \cong \Delta FAD$ by SAS congruence, PQ=FE and RP=DF
- + 91 72000 30307 <u>www.bharathacademy.com</u> bcc_try@hotmail.com

b. $\Delta ABC \cong \Delta RPQ$ by RHS congruence,

 $\angle B = \angle P = 90^{\circ} \land AB = RP$

- 3. In a square sheet, draw two triangles of equal areas such that
 - a. The triangles are congruent
 - b. The triangles are not congruent
- 4. ABCD is a rectangle. AC is a diagonal. By using SSS congruence rule. Show that $\Delta ABC \cong \Delta CDA$.

SECTION-D

 $3 \times 4 = 12$

- 1. In ΔABC , medians BD and CE are equal and intersect each other at O. prove that ΔABC is an isosceles triangle.
- 2. $\triangle ABC$ is isosceles with AB=AC, AD is the altitude from A to side BC. Prove that (i) $\triangle ADB \cong \triangle ADC$ (ii) $\angle BAD = \angle CAD$
- 3. ABCD is a rhombus. AC is a diagonal.
 - a. Show three pairs of equal parts giving reasons, in $\Delta ABC \wedge \Delta ADC$
 - b. Is $\triangle ABC \cong \triangle ADC$? Give reason.
 - c. Is $\angle BAC = \angle DAC$? Give reason.