BHARATH COACHING CENTRE

9th CBSE NUMBER SYSTEM Total: 50

MATHS Time: 2 hrs.

 $\underbrace{\mathsf{SECTION} - \mathsf{A}} 1 \times 5 = 5$

- 1. The number $\sqrt{7}$ is _____.
- 2. Every point on a number line represents .
- 3. The number of consecutive zeros in $2^3 \times 3^4 \times 5^4 \times 7^x$ ______.
- 4. $0.3\overline{2}$ When expressed in the form $\frac{p}{q}$ ______.
- 5. The value of $0.\overline{23} + 0.\overline{22}$ is ______.

 $\underbrace{\mathsf{SECTION} - \mathsf{B}}_{2 \times 5} = 20$

- 6. Express the following rational number as decimals $\frac{-22}{13}$.
- 7. Express the following decimals in the form $\frac{p}{q}$: 0. $\overline{585}$
- 8. If $\frac{1}{7} = 0$. $\overline{142857}$, write the decimal expression of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ & $\frac{6}{7}$ without actually doing the long division.
- 9. Express the following mixed recurring decimals in the form $\frac{p}{q}$: 15.7 $\overline{12}$
- 10. Find two irrational numbers lying between $\sqrt{2}$ & $\sqrt{3}$.
- 11. Whether the following number are rational or irrational: $(\sqrt{2} + 2)^2$
- 12. Represent $\sqrt{9.3}$ on the number line.
- 13. Removing radical sign and negative indices wherever they occur: $(\sqrt[3]{8})^{-1/2}$
- 14. If x, y, z are positive real numbers show that $\sqrt{x^{-1}y}$, $\sqrt{y^{-1}z}$, $\sqrt{z^{-1}x} = 1$.
- 15. Find the value of x $2^{5x} \div 2^x = \sqrt[5]{2^{20}}$

 $\underline{\mathsf{SECTION} - \mathsf{C}}$ $5 \times 5 = 25$

- 16. Express 0.999999.... in the form $\frac{p}{q}$, where p and q are integer and $q \ne 0$.
- 17. Find the value of x & y : $(\sqrt{x})^{-2/3} \sqrt{y^4} \div \sqrt{xy^{-1/2}}$
- 18. Find the value of a & b : $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} \sqrt{3}} = a + b\sqrt{15}$
- 19. Simplify: $\frac{\sqrt{5}-2}{\sqrt{5}+2} \frac{\sqrt{5}+2}{\sqrt{5}-2}$
- 20. Visualize $4.\overline{26}$ on the number line, up to 4 decimal places.