BHARATH COACHING CENTRE

9th CBSE Mathematics Total: 50

Lines and Angles Time: 1.30Hrs

 $5 \times 1 = 5$

- 1. The sum of the angles of the triangle is .
- 2. If the transversal is drawn to the parallel lines then their _____ angles will be equal.
- 3. If the two lines intersect each other, then angles will be equal.
- 4. If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two _____ angles.
- 5. Co-interior angles are also known as ______

 $5 \times 2 = 10$

- 6. In fig 6 lines PQ and RS intersect each other at point O. if $\angle POR$: $\angle ROQ = 5$: 7, find all the angles.
- 7. In fig 7, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.
- 8. In fig. 8, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.
- 9. In fig 9, find the values of x and y and then show that $AB \parallel CD$.
- 10. In fig 10 if $AB \parallel CD$, $EF \perp CD$ and $\angle GED = 126^{\circ}$, find $\angle AGE$, $\angle GEF$, $\angle FGE$.

 $\frac{\mathsf{SECTION} - \mathsf{C}}{\mathsf{SECTION}}$

- 11. In fig 11 ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of $\angle POS$ and $\angle SOQ$, respectively. If $\angle POS = x$, Find $\angle ROT$.
- 12. The sum of the angles of the triangle is 180°.
- 13. In fig 13, if $AB \parallel CD$, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.
- 14. If a transversal intersects two lines, then each pair of alternate interior angles is equal.
- 15. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to the point P. draw the figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

 $5 \times 4 = 20$

- 16. If a transversal intersects two lines such that the bisector of a pair of corresponding angles are parallel, then prove that the lines are parallel.
- 17. In Fig 17, OP, OQ, QR & OS are four rays. Prove that $\angle POQ + \angle QOR + \angle SOR + \angle POS = 360^{\circ}$.
- 18. In fig 18 the sides AB and AC of $\triangle ABC$ are produced to points E and D respectively. If bisectors BO and CO of $\angle CBE$ and $\angle BCD$ respectively meet at point O, then prove that $\angle BOC = 90^{\circ} \frac{1}{2} \angle BAC$.
- 19. In fig 19, the side QR of $\triangle PQR$ is produced to a point S. if the bisectors of $\angle PQR$ and $\angle PRS$ meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.
- 20. In fig 20, if $PQ \parallel ST$, $\angle PQR = 110^{\circ}$ and $\angle RST = 130^{\circ}$, find $\angle QRS$.

