BHARATHCOACHING CENTRE

SECTION - A

$5 \times 1=5$

1. The sum of the angles of the triangle is \qquad .
2. If the transversal is drawn to the parallel lines then their \qquad angles will be equal.
3. If the two lines intersect each other, then \qquad angles will be equal.
4. If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two
\qquad angles.
5. Co-interior angles are also known as \qquad .

SECTION - B

$$
5 \times 2=10
$$

6. In fig 6 lines PQ and RS intersect each other at point O . if $\angle P O R: \angle R O Q=5$: 7, find all the angles.
7. In fig 7, lines AB and CD intersect at O . If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.
8. In fig. 8, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.
9. In fig 9 , find the values of x and y and then show that $A B \| C D$.
10. In fig 10 if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F, \angle F G E$.

SECTION - C

$$
5 \times 3=15
$$

11. In fig 11 ray $O S$ stands on a line POQ. Ray $O R$ and ray $O T$ are angle bisectors of $\angle P O S$ and $\angle S O Q$, respectively. If $\angle P O S=x$, Find $\angle R O T$.
12. The sum of the angles of the triangle is 180°.
13. In fig 13 , if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.
14. If a transversal intersects two lines, then each pair of alternate interior angles is equal.
15. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to the point P . draw the figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.

SECTION - D

$$
5 \times 4=20
$$

16. If a transversal intersects two lines such that the bisector of a pair of corresponding angles are parallel, then prove that the lines are parallel.
17. In Fig 17, $\mathrm{OP}, \mathrm{OQ}, \mathrm{QR} \& \mathrm{OS}$ are four rays. Prove that $\angle P O Q+\angle Q O R+\angle S O R+\angle P O S=360^{\circ}$.
18. In fig 18 the sides AB and AC of $\triangle A B C$ are produced to points E and D respectively. If bisectors BO and CO of $\angle C B E$ and $\angle B C D$ respectively meet at point O , then prove that $\angle B O C=90^{\circ}-\frac{1}{2} \angle B A C$.
19. In fig 19 , the side QR of $\triangle P Q R$ is produced to a point S . if the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T , then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.
20. In fig 20, if $P Q \| S T, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.

