1. In which type of quadrilaterals opposite sides are equal and parallel?
2. In given figure, $A B C D$ is a parallelogram in which $\angle C B E=50^{\circ}$. What is the value of x ?

3. Two consecutive angles of a parallelogram are in the ratio $1: 3$, then find the smallest angle.
4. Two angles of a quadrilateral are 50° and 80° and other two angles are in the ratio $8: 15$, then find the remaining two angles.
5. If $P Q R S$ is a parallelogram, then find $\angle Q-\angle S$.

SECTION - B
6. Two opposite angles of a parallelogram are $(3 x-2)^{\circ}$ and $(63-2 x)^{\circ}$. Find all the angles of the parallelogram.
7. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (see Fig). Show that (i) $\triangle A P B \cong \triangle C Q D$
(ii) $\mathrm{AP}=\mathrm{CQ}$

8. Two parallel lines l and m are intersected by a transversal ' t '. Show that quadrilateral formed by bisectors of the interior angles is a rectangle.
9. ABCD is a quadrilateral in which P, Q, R and S are the mid - point of the sides $A B, B C, C D$ \& DA respectively. Show that PQRS is a parallegram.
10. In $\triangle A B C, A D$ is the median and $D E \| A B$. Prove that $B E$ is another median.

SECTION - C

$$
5 \times 3=15
$$

11. In a quadrilateral $A B C D, \angle B=130^{\circ}, \angle C=60^{\circ}$ and angle bisectors of $\angle A$ and $\angle D$ meet at P. Find $\angle A P D$.

12. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
13. ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that: (i) ABCD is a square (ii) diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
14. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see Fig). Show that the line segments AF and EC trisect the diagonal BD.
15. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.

SECTION - D

16. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22). Show that
(i) Quadrilateral ABED is a parallelogram
(ii) Quadrilateral BEFC is a parallelogram
(iii) $A D \| C F$ and $A D=C F$
(iv) Quadrilateral ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle A B C \cong \triangle D E F$.
17. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC} . \mathrm{AD}$ bisects exterior $\angle \mathrm{PAC}$ and $\mathrm{CD} \| \mathrm{AB}$. Show that
(i) $\angle \mathrm{DAC}=\angle \mathrm{BCA}$
(ii) $A B C D$ is a parallelogram
18. In the following figl, m and n are three parallel lines intersected by transversals p and q such that I, m and n cut off equal intercepts AB and BC on p . Show that I, m and n cut off equal intercepts DE and EF on q also.

19. Show that the quadrilateral formed by joining the mid-points of the sides of a rectangle is a rhombus.

