BHARATH COACHING CENTRE

10 th CBSE	Maths	Total: 50
Triangles		Time: 1.30Hrs
SECTION – A		5 x 1 = 5

SECTION – A

- In Δ ABC, if X and Y are points on AB and AC respectively such that $\frac{AX}{XR} = \frac{3}{4}$, 1. AY = 5 cm and YC = 9 cm, then that whether XY and BC parallel or not.
- In Δ DEW, AB || EW. If AD = 4 cm, DE = 12 cm and DE = 12 cm and DW = 24 2. cm, then find the value of DB.
- If $\Delta \text{ OCA} \sim \Delta \text{ ODB}$, then prove that AC || BD. 3.
- 4. \triangle ABC and \triangle BDE are two equilateral triangle such that BD = $\frac{1}{2}$ BC. Find the ratio of areas of Λ ABC and Λ BDF.
- In an isosceles right triangle, if the hypotenuse is $5\sqrt{2}$ cm, then find the 5. lengths of the sides of the triangle.

SECTION – B

- ABCD is a trapezium, in which AB is parallel to DC and its diagonals 6. intersects each other at point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$.
- In the given figure, EB \perp AC, BG \perp AE and CF \perp AE. Prove that 7. a) \triangle ABG $\sim \triangle$ DCB b) $\frac{BC}{BD} = \frac{BE}{BA}$
- In Δ ABC ~ Δ PQR and their corresponding altitudes AD and PS are in the 8. ratio 5: 7, find the ratio of the areas of \triangle ABC and \triangle PQR.
- Prove that in an equilateral triangle, three times of the square of one of the 9. sides is equal to four times of the square of one of its altitudes.
- 10. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the square of its diagonals.

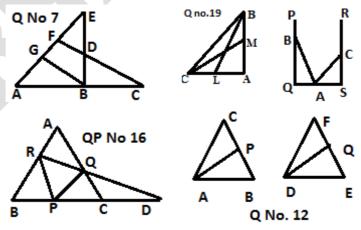
SECTION - C

 $5 \times 3 = 15$

- 11. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.
- +917200030307www.bharathacademv.com bcc try@hotmail.com

 $5 \times 2 = 10$

12. In the given figure, $\triangle ABC \sim \triangle DEF$, AP bisects $\angle CAB$ and DQ bisects $\angle FDE$.


a)
$$\frac{AP}{DQ} = \frac{AB}{DE}$$
 b) Δ CAP $\sim \Delta$ FDQ

- 13. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
- 14. In a right angled \triangle ABC, right angled at B, points D and E divides BC and BA respectively in the ratio 2:1. Prove that $9AD^2 + 9CE^2 = 13AC^2$.
- 15. As shown in the figure, a 26m long ladder is placed at A. If it is placed along wall PQ, reaches a height of 24m, whereas it reaches a height of 10m, if it is placed against wall RS. Find the distance between the walls.

SECTION - D

5 x 4 = 20

- 16. In the given figure, PQ || BA and PR || CA. If PD = 12cm, find BD x CD.
- 17. Prove that if two sides and a median bisecting the third sides of a triangle are respectively proportional to the corresponding sides and the median of another triangles, then the two triangles are similar.
- 18. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
- 19. In the figure, BL and CM are the medians of a triangle right angled at A. Prove that $4(BL^2 + CM^2) = 5BC^2$
- 20. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides or state and prove Pythagoras theorem.

+ 91 72000 30307 www.bharathacademy.com bcc_tr

bcc_try@hotmail.com