| BHARATHCOACHING CENTRE |  |
| :---: | :---: |
| $10^{\text {th }} \mathrm{CBSE}$ | Maths |
| Triangles | Total: 50 |

SECTION - A

1. In $\triangle A B C$, if $X$ and $Y$ are points on $A B$ and $A C$ respectively such that $\frac{A X}{X B}=\frac{3}{4}$, $A Y=5 \mathrm{~cm}$ and $Y C=9 \mathrm{~cm}$, then that whether $X Y$ and $B C$ parallel or not.
2. In $\Delta D E W, A B \| E W$. If $A D=4 \mathrm{~cm}, D E=12 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$ and $D W=24$ cm , then find the value of $D B$.
3. If $\triangle \mathrm{OCA} \sim \Delta \mathrm{ODB}$, then prove that $\mathrm{AC} \| \mathrm{BD}$.
4. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangle such that $B D=\frac{1}{3} B C$. Find the ratio of areas of $\triangle A B C$ and $\triangle B D E$.
5. In an isosceles right triangle, if the hypotenuse is $5 \sqrt{2} \mathrm{~cm}$, then find the lengths of the sides of the triangle.

## SECTION - B

$$
5 \times 2=10
$$

6. $A B C D$ is a trapezium, in which $A B$ is parallel to $D C$ and its diagonals intersects each other at point $O$. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
7. In the given figure, $E B \perp A C, B G \perp A E$ and $C F \perp A E$. Prove that
a) $\triangle \mathrm{ABG} \sim \triangle \mathrm{DCB}$
b) $\frac{B C}{B D}=\frac{B E}{B A}$
8. In $\triangle A B C \sim \triangle P Q R$ and their corresponding altitudes $A D$ and $P S$ are in the ratio 5: 7, find the ratio of the areas of $\triangle A B C$ and $\triangle P Q R$.
9. Prove that in an equilateral triangle, three times of the square of one of the sides is equal to four times of the square of one of its altitudes.
10. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the square of its diagonals.

SECTION - C $5 \times 3=15$
11. The diagonals of a quadrilateral $A B C D$ intersect each other at the point $O$ such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that $A B C D$ is a trapezium.
12. In the given figure, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{AP}$ bisects $\angle \mathrm{CAB}$ and DQ bisects $\angle F D E$.
a) $\frac{A P}{D Q}=\frac{A B}{D E}$
b) $\Delta \mathrm{CAP} \sim \Delta \mathrm{FDQ}$
13. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
14. In a right angled $\triangle A B C$, right angled at $B$, points $D$ and $E$ divides $B C$ and $B A$ respectively in the ratio $2: 1$. Prove that $9 A D^{2}+9 C E^{2}=13 A C^{2}$.
15. As shown in the figure, a 26 m long ladder is placed at $A$. If it is placed along wall $P Q$, reaches a height of 24 m , whereas it reaches a height of 10 m , if it is placed against wall RS. Find the distance between the walls.

## SECTION - D

16. In the given figure, $P Q \| B A$ and $P R \| C A$. If $P D=12 \mathrm{~cm}$, find $B D \times C D$.
17. Prove that if two sides and a median bisecting the third sides of a triangle are respectively proportional to the corresponding sides and the median of another triangles, then the two triangles are similar.
18. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
19. In the figure, BL and CM are the medians of a triangle right angled at A . Prove that

$$
4\left(\mathrm{BL}^{2}+C M^{2}\right)=5 \mathrm{BC}^{2}
$$

20. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides or state and prove Pythagoras theorem.


Q No. 12

