BHARATH COACHING CENTRE

10 th CBSE	Polynomial	Total: 50
Maths	Unit - 2	Time: 1.30 hrs

SECTION – A

- 1. If the zeroes of $x^2 px q$ are reciprocal of each other, then find the value of q.
- 2. If the sum of the zeroes of the polynomial, $p(x) = (k^2 14) x^2 2x 4$ is 1, then find the value of k.
- 3. If the sum of the zeroes of the quadratic polynomial $3x^2 kx + 6$ is 3, then find the value of k.
- 4. What is the value of p, for which the polynomial $x^3 + 4x^2 px 6$ is completely divisible by (x 1)?
- 5. The graph of a polynomial p(x) intersects the x axis three times in distinct points. Could $4 4x x^2 x^3$ be an expression for p(x)?

<u>SECTION – B</u>

5 x 2 = 10

 $5 \times 3 = 15$

 $5 \times 4 = 20$

5 x 1 = 5

- 6. Find the quadratic polynomial the sum and product of whose zeroes are -7 and -18 respectively. Hence find the zeroes.
- 7. If $\alpha = 2$, and $\beta = 3$ are zeroes of a polynomial, $x^2 5x + 6$, then find polynomial whose zeroes are $\frac{1}{\alpha} \& \frac{1}{\beta}$.
- 8. Form a quadratic polynomial whose zeroes are $\frac{3-\sqrt{3}}{5}$ and $\frac{3+\sqrt{3}}{5}$.
- 9. Divide $2x^5 3x^4 + 2x^2 3$ by $x^2 1$.
- 10. When a polynomial $6x^4 + 8x^3 + 27x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder is in the form ax + b. Find a and b.

<u>SECTION – C</u>

- 11. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 x 2$, find a polynomial whose zeros are $2\alpha + 1$ and $2\beta + 1$.
- 12. Quadratic polynomial $4x^2 + 12x + 9$ has zeroes as α and β . Now form a quadratic polynomial whose zeroes are α 1 and β 1.
- 13. If one zero of the polynomial $2x^2 5x (2k + 1)$ is twice the other, find both the zeroes of the polynomial and the value of k.
- 14. Find all the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, if two of the zeroes are $\sqrt{2}$ and $\sqrt{2}$
- 15. Check whether polynomial $3x^2 5x + 2$ is a factor of the polynomial $3x^4 5x^3 10x^2 + 20x 8$. Verify by division algorithm.

SECTION - D

16. If α and β are the zeros of the quadratic polynomial $f(x) = 3x^2 - 6x + 4$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{\beta}{\beta}$

$$2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta.$$

- 17. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 3x 2$, find a polynomial whose zeros are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$.
- 18. Find all the zeroes of the polynomial $2x^4 9x^3 + 5x^2 + 3x 1$, if two of its zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$ +91 72000 30307www.bharathacademy.combcc_try@homail.com

- 19. Find the polynomial of the least degree which should be subtracted from polynomial $x^4 5x^3 + x^2 + 17x 11$ so that it is exactly divisible by $x^2 3$.
- 20. If the polynomial $f(x) = x^4 6x^3 + 16x^2 25x + 10$ is divided by another polynomial $x^2 2x + k$, the remainder comes out to be x + a, find k and a.