BHARATHCOACHING CENTRE

$10^{\text {th }}$ CBSE
Polynomial
Total: 50
Maths
Unit-2
Time: 1.30 hrs
SECTION - A
$5 \times 1=5$

1. If the zeroes of $x^{2}-p x-q$ are reciprocal of each other, then find the value of q.
2. If the sum of the zeroes of the polynomial, $p(x)=\left(k^{2}-14\right) x^{2}-2 x-4$ is 1 , then find the value of k.
3. If the sum of the zeroes of the quadratic polynomial $3 x^{2}-k x+6$ is 3 , then find the value of k.
4. What is the value of p, for which the polynomial $x^{3}+4 x^{2}-p x-6$ is completely divisible by $(x-1)$?
5. The graph of a polynomial $p(x)$ intersects the x - axis three times in distinct points. Could $4-4 x-x^{2}-x^{3}$ be an expression for $p(x)$?

SECTION - B

$$
5 \times 2=10
$$

6. Find the quadratic polynomial the sum and product of whose zeroes are -7 and -18 respectively. Hence find the zeroes.
7. If $\alpha=2$, and $\beta=3$ are zeroes of a polynomial, $x^{2}-5 x+6$, then find polynomial whose zeroes are $\frac{1}{\alpha} \& \frac{1}{\beta}$.
8. Form a quadratic polynomial whose zeroes are $\frac{3-\sqrt{3}}{5}$ and $\frac{3+\sqrt{3}}{5}$.
9. Divide $2 x^{5}-3 x^{4}+2 x^{2}-3$ by $x^{2}-1$.
10. When a polynomial $6 x^{4}+8 x^{3}+27 x^{2}+21 x+7$ is divided by another polynomial $3 x^{2}+4 x+1$, the remainder is in the form $\mathrm{ax}+\mathrm{b}$. Find a and b .

SECTION - C
$5 \times 3=15$
11. If α and β are the zeros of the quadratic polynomial $f(x)=x^{2}-x-2$, find a polynomial whose zeros are $2 \alpha+1$ and $2 \beta+1$.
12. Quadratic polynomial $4 x^{2}+12 x+9$ has zeroes as α and β. Now form a quadratic polynomial whose zeroes are $\alpha-1$ and $\beta-1$.
13. If one zero of the polynomial $2 x^{2}-5 x-(2 k+1)$ is twice the other, find both the zeroes of the polynomial and the value of k.
14. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if two of the zeroes are $\sqrt{2}$ and $-\sqrt{2}$
15. Check whether polynomial $3 x^{2}-5 x+2$ is a factor of the polynomial $3 x^{4}-5 x^{3}-10 x^{2}+20 x-8$. Verify by division algorithm.

SECTION - D

$$
5 \times 4=20
$$

16. If α and β are the zeros of the quadratic polynomial $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-6 \mathrm{x}+4$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+$ $2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$.
17. If α and β are the zeros of the quadratic polynomial $f(x)=x^{2}-3 x-2$, find a polynomial whose zeros are $\frac{1}{2 \alpha+\beta}$ and $\frac{1}{2 \beta+\alpha}$.
18. Find all the zeroes of the polynomial $2 x^{4}-9 x^{3}+5 x^{2}+3 x-1$, if two of its zeroes are $2+\sqrt{3}$ and $2-\sqrt{3}$
19. Find the polynomial of the least degree which should be subtracted from polynomial $x^{4}-5 x^{3}+x^{2}+17 x-$ 11 so that it is exactly divisible by $x^{2}-3$.
20. If the polynomial $f(x)=x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.
