BHARATH COACHING CENTRE

$10^{\text {th }}$ CBSE
Circles
Total: 40

Maths
SA-2
Time: 1.30 hrs

SECTION - A
$5 \times 1=5$

1. If a line touches the circle at only one print, then it is known as:
2. In a circle of radius 4 cm , tangents should be drawn from the end points of a chord so that the angle between the tangents is 120°,then the length of the chord should be:
3. If two tangents inclined at an angle of 60° are drawn to a circle of radius 3 cm , the length of each tangent is equal to:
4. $P Q$ is a tangent to a circle with centre O at point P. if $\triangle O P Q$ is an isosceles triangle, then $\angle O Q P$ is
5. Two concentric circles of radii a and b, where $a>b$, are given. The length of chord of the larger circle which touches the smaller circle is:

SECTION - B
$5 \times 2=10$
6. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
7. $A D$ and $A C$ are tangents to the circle with centre O at D and C, respectively. If $\angle D A C=70^{\circ}$, find $\angle B C A, \angle B D C \& \angle B C O$ (see fig -1).
8. In the figure $A D=8 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $T B$ is the tangent at B to the circle with centre O. find $O T$, if BT is 4 cm (see fig - 2).
9. Prove that the line segment joining the point of contact of two parallel tangents to a circle is a diameter of the circle.
10. Two tangents $P A$ and $P B$ are drawn to a circle with centre O, such that $\angle A P B=120^{\circ}$. Prove that $O P=2 A P$.

SECTION - C
$5 \times 3=15$
11. Prove that the angle between the two tangents to a circle drawn from an external point, is supplementary to the angle subtended by the line segment joining the points of contact at the centre.
12. In the given fig - $3, \mathrm{OP}$ is equal to the diameter of the circle. Prove that $A B P$ an equilateral triangle.
13. In Fig $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.
14. From an external point P, two tangents $P A$ and $P B$ are drawn to a circle with centre O. if $O P=2$ $O A$, then show that triangle $A P B$ is equilateral.
15. In the fig, two circles with centre A and B touch each other externally. $P M=15 \mathrm{~cm}$ is tangent to circle with centre A and $Q N=13 \mathrm{~cm}$ is tangent to circle with centre B from external points P and Q. if $P A=17 \mathrm{~cm}$ and $B Q=12 \mathrm{~cm}$, find the distance between the centres A and B of circles.
16. A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig). Find the sides $A B$ and $A C$.
17. Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm respectively intersect at two points P and Q such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ.

