BHARATH COACHING CENTRE

$10^{\text {th }}$ CBSE
Area Related to Circle
Total: 50

Maths
SA-2
Time: 1.30 hrs

SECTION - A
$5 \times 1=5$

1. Area of a quadrant of a circle, whose circumference is 22 cm , is $\left(\pi=\frac{22}{7}\right)$.
2. The diameter of a circle whose area is equal to the sum of the areas of the two circles of radii 40 cm and 9 cm is:
3. The area of the largest triangle that can be inscribed in a semicircle, whose radius is r, is
4. The area of a sector with radius ' r ' and arc length ' 1 ' is
5. In a circle of diameter 42 cm , if an arc subtends an angle of 60° at the centre where $\left(\pi=\frac{22}{7}\right)$, then length of arc is

SECTION - B
$5 \times 2=10$
6. A bicycle wheel of radius 35 cm is making 25 revolutions in 10 seconds. At what speed in km / h is the bicycle moving?
7. If the perimeter of a protractor is 72 cm , calculate its area. $\left(\pi=\frac{22}{7}\right)$
8. A chord of a circle of radius 14 cm subtends an angle of 60° at the centre. Find the area of the corresponding minor segment. $\left(\pi=\frac{22}{7}, \sqrt{3}=1.73\right)$
9. Find the area of a right angled triangle, if the radius of its circumcircle is 3 cm and altitude drawn to the hypotenuse is 2 cm .
10. For each corner of a square of side 4 cm , a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in fig. Find the area of the remaining portion of the square. $(\pi=3.14)$

SECTION - C

$5 \times 3=15$
11. A wire when bent in the form of a square encloses an area $121 \mathrm{sq} . \mathrm{cm}$. if the wire were bent in the form of a circle, find the area enclosed by the circle $\left(\pi=\frac{22}{7}\right)$.
12. A bicycle wheel makes 75 revolutions per minute to maintain a speed of $8.91 \mathrm{~km} / \mathrm{hr}$. find the diameter of the wheel.
13. A chord $A B$ of a circle of radius 15 cm subtends an angle of 60° at the centre of the circle. Find the areas of the major and minor segments. $\left(\pi=\frac{22}{7}, \sqrt{3}=1.73\right)$
14. In the given figure, find the area of the region, where a circular arc of radius 6 cm is drawn with a vertex O of an equilateral triangle $O A B$ of side 12 cm as centre.
15. Find the area of the shaded region in the given fig, if $B C=B D=8 \mathrm{~cm}, A C=A D=15 \mathrm{~cm}$ and O is the centre of the circle. ($\pi=3.14$)

SECTION - D
$5 \times 4=20$
16. A race track is in the form of a ring whose inner and outer circumferences are 437 m and 503 m respectively. Find the width of the track and also its area $\left(\pi=\frac{22}{7}\right)$.
17. In a circle of radius 6 cm , a chord $A B$ of length 10 cm makes an angle of 110° at the centre O of the circle $\left(\pi=\frac{22}{7}\right)$. Find:
(i) Circumference of the circle
(iii) The length of the arc
(ii) The area of the circle
(iv) The area of the sector AOB
18. The area of an equilateral triangle $A B C$ is $17320.5 \mathrm{~cm}^{2}$. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig). Find the area of the shaded region. (Use $\pi=3.14$ and $\sqrt{3}=1.73205$)
19. Find the area of the segment $A Y B$ shown in Fig. 12.9, if radius of the circle is 21 cm and $\angle A O B=120^{\circ}$.
20. In Given Fig, $A B C$ is a right - angled triangle, $\angle B=90^{\circ}, A B=28 \mathrm{~cm}$ and $B C=21 \mathrm{~cm}$. with $A C$ as diameter, a semi-circle is drawn and with $B C$ as radius a quarter circle is drawn. Find the area of the shaded region.

